NEO-CLERODANE DITERPENOIDS FROM BACCHARIS INCARUM

ARTURO GIVOVICH, AURELIO SAN-MARTÍN and MARIANO CASTILLO

Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile

(Received 13 March 1986)

Key Word Index—Baccharis incarum; Compositae; Astereae; diterpenes; clerodanes.

Abstract—Five new neo-clerodane diterpenoids were isolated from Baccharis incarum. Their structures were established by spectroscopic methods.

INTRODUCTION

In a preceding paper [1] we reported the isolation and structural elucidation of a number of neo-clerodane diterpenoids from B. incarum Wedd. A re-investigation of this species using a modified isolation procedure afforded in addition to known compounds, five new clerodane diterpenes: the kolavane derivative 1, the clerodane lactones 2 and 3, 7α-hydroxybacchotricuneatin A (4) and 1α-acetylbacchotricuneatin A (5). Their structures were determined by spectroscopic methods.

RESULTS AND DISCUSSION

The ¹H NMR spectrum of 1 exhibited typical signals for a bicyclic clerodane carbon skeleton (Table 1): two tertiary, one secondary and one vinyl methyl groups, the latter long-range coupled to an olefinic proton at δ 5.37, which was in turn coupled to an acetoxyl methylene group. The trans-clerodane configuration of 1 was deduced from the absorptions at δ 1.06, assigned to the α -axial C-5 methyl group. In related cis-clerodanes, the C-18 acetoxyl substituent deshields this methyl group by 0.15 ppm [1, 2]. The chemical shifts of the C-9 and C-8 methyl groups are also in agreement with the relative configuration shown in 1 [3]. The E-configuration of the 13,14-double bond was suggested by comparison of the H-14 and H-16 absorptions with those of similar kolavane derivatives [4].

The IR spectra of compounds 2 and 3 showed absorptions due to α,β -unsaturated γ -lactones (1750 cm⁻¹) and ester functions (1730 cm⁻¹). Their ¹HNMR spectra (Table 1) also displayed similar signals of nearly identical chemical shifts assigned to acetoxyl methylene groups, two tertiary and one secondary methyl groups and one olefinic proton. The nature of their side chains followed from the corresponding ¹H NMR signals which were in agreement with a β -substituted γ -butenolide in 2 and an α substituted y-butenolide in 3. An extra methoxyl signal in the ¹H NMR spectrum of 2 indicated that this compound was a mixture of C-16 epimers. The relative configurations depicted in 2 and 3 were based on the same arguments as discussed above.

Compound 4, C₂₀H₂₂O₆, showed absorptions in the IR spectrum assigned to a δ -lactone (1740 cm⁻¹), another lactone group, probably an α,β -unsaturated y-lactone (1755 cm^{-1}) , double bonds $(3120, 1650, 870 \text{ cm}^{-1})$ and a

hydroxyl group (3550 cm⁻¹). Its ¹H NMR spectrum showed the presence of a β -substituted furan ring, only one tertiary methyl group and the absence of the signal typical of the secondary methyl group at C-8 present in the usual clerodane diterpenes of Baccharis. These facts suggested a structure related to bacchotricuneatin A (4, $R_1 = R_2 = H$), a compound originally isolated from B. tricuneata [5]. Placement of the extra hydroxyl group of 4 at C-7 and its axial orientation was indicated by the couplings of H-7 ($W_{1/2} = 7$ Hz), the narrow doublet (3.0 Hz) at δ 2.67 assigned to H-8 and the strong deshielding effect exerted on the exo H-19 methylene proton (δ 5.34) as compared to the *endo* H-19 (δ 3.93) which also showed the expected W coupling [3] with H-6 β . The corresponding values for the exo and endo H-19 in

 $R_2 = H$

2830 A. Givovich et al.

Table 1. 1	¹ H NMR	data of	compounds	1–5 (60	MHz for	1 and	250	MHz	for :	2–5,	CDCl ₃ ,
			TMS as	s interna	l standard)*					

Н	1	2	3	4†	5‡
3	5.62 m	5.52 m	5.53 m	6.73 dd	6.57 dd
	$(W_{1/2}=8~\mathrm{Hz})$	$(W_{1/2} = 7.5 \text{ Hz})$	$(W_{1/2} = 6.0 \text{ Hz})$	(7.3, 2.1)	(6.6, 1.9)
14	5.37 t (br)	5.67 s (br)	7.07 s (br)	6.44 s (br)	6.39 d
	(7.0)				(1.0)
15	4.60 d		$4.73 \ s (br)$	$7.48 \ s(br)$	7.44 s (br)
	(7.0)		, ,	` ′	` '
16	1.72 s (br)	$6.71 \ s(br)$		7.45 s (br)	7.41 t
	, ,	` '		` ′	(1.5)
17	0.80 d	0.76 d	0.78 d		,
	(6.0)	(5.2)	(6.1)		
18	4.56 s (br)	4.44 s (br)	4.47 s (br)		
19	` ,			5.34 d	4.45 dd
				(7.5)	(7.7, 1.9)
	1.06 s	1.0 s	1.02 s	` '	` , ,
19′				3.93 dd	4.33 d
				(7.5, 2.2)	(7.7)
20	0.76 s	0.69 s	0.71 s	1.14 s	0.89 s
Ac	2.06 s	2.00 s	2.02 s		2.02 s
OMe		3.50 s			
		3.51 s			

^{*}Values in parentheses are coupling constants in Hz.

bacchotricuneatin A are δ 4.22 and 3.99, respectively. This effect, due to the 1,3-diaxial interaction caused by the 7α -hydroxyl group, was also reflected in the downfield shift (0.30 ppm) of H-20 in 4 when compared to that of bacchotricuneatin A. The remaining signals in the ¹H NMR spectrum, including the couplings were very similar to those of bacchotricuneatin A. Accordingly, the stereochemistry of 7α -hydroxybacchotricuneatin A (4) was the same.

The spectroscopic data of compound 5 were very similar to those of 4 and its structure and stereochemistry was easily deduced from the ¹H NMR spectra. Again, placement of an axial acetyl group at C-1 induced a downfield shift of the *endo* H-19. Further evidence for the proposed stereochemistry was obtained by examination of the ¹³C NMR spectrum of 5 (see Experimental) which showed, after comparison with that of bacchotricuneatin A [5], the expected downfield shifts for C-1, C-2 and C-10 and an upfield shift of 6.3 ppm for C-3. Thus, compound 5 corresponded to 1α-acetylbacchotricuneatin A (the 1α-hydroxyl derivative of 5 was recently reported for the first time from *Liatris spicata* [6]).

The absolute configuration of compounds 1-5 was not established but it very probably corresponds to that shown in the formulae in keeping with the neo-clerodane [7] configuration exhibited by all the clerodane diterpenoids isolated so far from *Baccharis* whose absolute configuration has been rigorously established [5, 8-12].

EXPERIMENTAL

Isolation procedure. Dried and ground plant material [1] (2.5 kg) was percolated at room temp. with MeOH for 36 hr. The

MeOH extract (500 g) was first partitioned between CHCl₃ and MeOH-H₂O (1:9), then the CHCl₃, solubles were partitioned between petrol and MeOH-H₂O (9:1) to give 60 g of aq. MeOH solubles. This extract was fractionated by flash-CC on silica gel eluted with mixtures of increasing polarity of petrol and EtOAc. Compounds 1-5 were isolated after repeated chromatography (silica gel) of suitable fractions.

Compound 1. 85 mg. Oil. $[\alpha]_D^{25} = -31.4^\circ$ (CHCl₃; c 0.83). IR $v_{\text{max}}^{\text{film}} \text{cm}^{-1}$: 1720, 1670, 1240. EIMS m/z (rel. int.): 331 [M $-\text{AcO}]^+$ (4), 316 [331 $-\text{Me}]^+$ (2), 274 (12), 256 (13), 201 (20), 187 (60), 159 (58), 119 (81), 105 (100).

Compound 2. 282 mg. Oil. $[\alpha]_D^{25} = -152.2^{\circ}$ (CHCl₃; c 0.84). IR $v_{\text{max}}^{\text{film}} \text{ cm}^{-1}$: 1750, 1730, 1660, 1230. EIMS m/z (rel. int.): 330 [M $-\text{AcOH}]^+$ (18), 272 (23), 204 (23), 189 (80), 187 (100), 175 (25), 159 (60), 119 (90), 105 (75).

Compound 3. 185 mg. Oil. $[\alpha]_D^{25} = -22.8^{\circ}$ (CHCl₃; c 0.55). IR $v_{\text{max}}^{\text{lim}}$ cm⁻¹: 1745, 1720, 1660, 1230. EIMS m/z (rel. int.): 300 [M -AcOH]⁺ (4), 285 $[300 - \text{Me}]^+$ (7), 205 (10), 203 (25), 189 (40), 134 (38), 121 (100), 105 (55).

 7α -Hydroxybacchotricuneatin A (4). 72 mg. Mp 242–243° (Me₂CO). $[\alpha]_D^{25} = -154.6^\circ$ (CHCl₃; c 0.24). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3550, 3120, 1755, 1740, 1650, 870. EIMS m/z (rel. int.): 358 [M] ⁺ (5), 340 [M - H₂O] ⁺ (5), 328 (45), 312 (15), 190 (24), 121 (100), 95 (41), 94 (40), 81 (24).

 1α -Acetylbacchotricuneatin A (5). 40 mg. Mp 203–205° (Et₂O). [α]₂²⁵ = −121.3° (CHCl₃; c 0.40). IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹: 1750, 1730, 1720, 1660, 1240. EIMS m/z (rel. int.): 400 [M] + (8), 342 (7), 283 (7), 279 (8), 263 (22), 239 (8), 205 (20), 149 (50), 117 (100), 116 (95), 95 (23), 94 (17), 82 (50), 81 (18). 13 C NMR (62.9 MHz, CDCl₃, TMS as internal standard): δ 173.1 (s, C-17), 170.1 (s, Ac), 168.5 (s, C-18), 144.2 (d, C-15), 137.0 (s, C-4), 129.9 (d, C-3), 124.4 (s, C-13), 108.6 (d, C-14), 72.6 (t, C-19), 70.1 (d, C-12), 66.0 (d, C-1), 54.6 (d, C-8), 48.5 (d, C-10), 44.7 (s, C-5), 42.7 (t, C-11), 37.2 (s, C-9), 34.3 (t,

^{†1.41} m (H-6 β); 2.53 dd (14.4, 2.2, H-6 α); 2.67 d (3.0, H-8); 4.67 m ($W_{1/2} = 7$ Hz, H-7 β); 5.39 dd (10.2, 7.4, H-12).

 $^{2.63 \} dd \ (11.9, 3.9, H-8); 5.38 \ dd \ (10.4, 6.3, H-12); 5.46 \ m \ (W_{1/2} = 8.3 \ Hz, H-1\beta).$

C-2), 33.3 (t, C-6), 21.5 (q, C-20), 21.5 (q, Ac), 19.6 (t, C-7).

Bacchalineol [13] and its malonate half-ester and O-methyl ester derivatives were also isolated from B. incarum. Their identities were confirmed by comparison of their spectroscopic data with that of the literature [13].

Acknowledgements-We are indebted to Dr. D. B. Maclean, McMaster University, Canada, for NMR and MS measurements. This work was supported by D.I.B. (Universidad de Chile), Fondo Nacional de Ciencias (Grant 1060-84) and the Organization of American States.

REFERENCES

- 1. San-Martín, A., Givovich, A. and Castillo, M. (1986) Phytochemistry 25, 264.
- 2. McCrindle, R., Nakamura, E. and Anderson, A. B. (1976) J. 12. Guerrero, C. and Romo de Vivar, A. (1973) Rev. Latinoam. Chem. Soc. Perkin Trans. 1, 159.
- 3. Rossomando, P. C., Giordano, O. S., Espineira, J. and 13. Bohlmann, F., Zdero, C., Robinson, H. and King, R. M. Joseph-Nathan, P. (1985) Phytochemistry 24, 787.

- 4. Bohlmann, F., Bapuji, M., King, R. M. and Robinson, H. (1982) Phytochemistry 21, 939.
- 5. Wagner, H., Seitz, R., Lotter, H. and Herz, W. (1979) J. Org. Chem. 43, 3339.
- 6. Baruah, R. N., Zdero, C., Bohlmann, F., King, R. M. and Robinson, H. (1985) Phytochemistry 24, 2641.
- 7. Rogers, D., Unal, G. G., Williams, D. J., Lay, S. V., Sim, G. A., Joshi, B. S. and Rabindranath, K. R. (1979) J. Chem. Soc. Chem. Commun. 97.
- 8. San-Martín, A., Rovirosa, J., Labbé, C., Givovich, A., Mahu, M. and Castillo, M. (1986) Phytochemistry 25, 1393.
- 9. Herz, W., Pipotti, A. M., Soderholm, A. C., Shuhama, I. K. and Vichnewski, W. (1977) J. Org. Chem. 42, 3913.
- 10. Gambaro, V., Chammy, M. C., Garbarino, J., San-Martín, A. and Castillo, M. (1986) Phytochemistry 25, 2175.
- 11. Bohlmann, F., Zdero, C., King, R. M. and Robinson, H. (1984) Phytochemistry 23, 1511.
- Quim. 4, 178.
- (1979) Phytochemistry 18, 1993.